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ABSTRACT: Globalization has raised concerns about spreading
diseases and emphasized the need for quick and efficient methods
for drug screening. Established drug efficacy and toxicity
approaches have proven obsolete, with a high failure rate in
clinical trials. Organ-on-a-chip has emerged as an essential
alternative to outdated techniques, precisely simulating important
characteristics of organs and predicting drug pharmacokinetics
more ethically and efficiently. Although promising, most organ-on-
a-chip devices are still manufactured using principles and materials
from the micromachining industry. The abusive use of plastic for
traditional drug screening methods and device production should
be considered when substituting technologies so that the
compensation for the generation of plastic waste can be projected.
This critical review outlines recent advances for organ-on-a-chip in the industry and estimates the possibility of scaling up its
production. Moreover, it analyzes trends in organ-on-a-chip publications and provides suggestions for a more sustainable future for

organ-on-a-chip research and production.
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B INTRODUCTION

Drug screening and testing are highly debated topics in
science, as it is critical to keep methods up-to-date to achieve
more efficient results. However, the pharmaceutical industry
has faced failures in clinical trials due to the poor efficacy of the
current methods used for drug screening."” Although advances
have been made in this field, the analytical methods used for
drug testing have remained the same since the beginning of the
past century.3

Animal testing was the first method broadly used, and it
brought advances to the medical and pharmaceutical fields
despite the ethical issues and poor efficacy and predictability
involved.”” Tt is important to note that in vivo experiments
include multiple unmanageable variables and conditions,
leading to very complex interpretations. With the advent of
cell culture, a range of new techniques have started to be
explored, bringing the possibility of more ethical and efficient
drug testing approaches. One of the most recent advances in
cell culture is 3D culture, which provides an environment that
more closely resembles the physiology of human tissues
through the use of extracellular matrices that allow the growth
of multiple layers of cells.”” Despite evidencing incredible
advances, 2D and 3D cell culture still fail to predict organ
responses to new drugs in clinical trials, are time-consuming,
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and account for extensive costs. Although 2D cell culture
generates large amounts of data with relatively short invest-
ments, these results are far from those observed in vivo and
require computational modeling for drug response evalua-
tion.”® Biomimetic 3D tissue, instead, nearly mimics drug
delivery and penetration in vivo and has the advantage of
allowing observation of cell—cell interaction. However, 3D
culture fails to represent a crucial characteristic, the dynamicity
of drug delivery, failing to simulate shear and drag forces,
which are essential for a more reliable result.® Furthermore, the
absence of other factors present in biological scenarios, such as
the repositioning of nutrients, the gradients of substances, and
mechanical stress, distances the individual cell responses from
the ones obtained in organs.

With the advancement of new technologies and capabilities,
organ-on-a-chip (OoC) has become an essential target of
recent developments. These devices may accurately mimic the
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features of organs by the inoculation of cell lines and
continuous perfusion of nutrients. As a result, these devices
can now access cell—cell interactions, physiological micro-
environments, tissue communication, and vascular infusion in
ways that no previous technology could.”'® As a result, these
devices may be used to predict organ behavior and even
pharmacokinetics in a more ethical and efficient manner."'

Organs-on-chips are being extensively developed today to
address industry needs, and a variety of new materials and
methods are being introduced to this technology. Still, most
devices are manufactured using the same old-fashioned plastics
used by the micromachine industry. An alternative that might
become popular in the field of OoCs is biodegradable
materials, as long as they provide the expected features for
this purpose, such as biocompatibility, transparency, and
moldability, among others. Moreover, a range of methods
have already been established to fabricate durable and efficient
devices, although it is not common to find references that
suggest the possible reuse of such devices.'”"”

Despite considerable efforts to make OoC devices the future
of pharmaceutical research, as scientists in the twenty-first
century, we must take sustainability into account and assess
whether or not this technology may be harmful or advanta-
geous to the environment. In this situation, it is important to
examine an array of aspects, such as the usage of chemicals,
costs, the quantity and type of materials employed, their
biodegradability, and production processes.'*'* In addition,
the disposability of devices is a reality that is already changing
with a few efforts to create reusable chips.'® This critical review
recapitulates the advances in organ-on-a-chip and discusses
whether this technology can replace current in-use techniques
for drug development in a more sustainable way. Furthermore,
it stipulates cost-effective relationships, exploring possibilities
for a practical and ecofriendly future for the pharmaceutical
industry.

B /N VITRO MODELING PROGRESSION

Animal testing has long been a standard for drug development
and disease behavior studies. This method can give insights
into body functions and physiological processes by using
animals to predict the behavior of humans.'” However, this
approach is in constant conflict with bioethical values and has
proven to be incompatible with the behavior observed in
human candidates in many cases, in addition to the low
throughput observed.”'® In fact, neither efficacy nor toxicity
are well predicted in animal models, as evidenced by the 80%
failure rate of new drugs during clinical trials due to enormous
differences between organisms. ~ The search for new methods
of exploring drug development and disease modeling became
necessary. Therefore, in vitro assays became a reality with the
constant enhancement of 2D culture.

Conventional 2D culture is well established and stand-
ardized for drug screening. These systems are generally made
of rigid, transparent plastic or glass material, and the
methodologies involved in this technique are adaptable,
comparable, and reproducible. Cells in 2D assays are easily
accessed for analysis, and their manipulation is simple, makin%
this method very popular among drug/disease researchers.”
The cost involved in the research for new drug candidates is
very obscure, and the data are hidden from public access.
However, a study'* estimates that the current investment for in
vitro/in vivo screening ranges from US$660 to US$2,760
million per new drug. This cost is a rough estimate since the
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actual values are unknown, and it is used as a base for
estimating the impact of organ-on-a-chip in the industry. In
addition, the previous estimated cost involved all phases of
testing, research, personnel, and material consumption for
launching a new drug candidate. However, it does not consider
the cost effectiveness and the waste generated by the
traditional screening methods."*

Research laboratories worldwide are estimated to generate
5.5 million tons of plastic waste, raising an environmental
concern considering that the materials used for in vitro testing
are primarily disposable.”** In addition, 2D traditional culture
assays are established as high reagent consumers, making them
environmentally and financially not the best option for medical
and pharmaceutical applications.”® Therefore, considering the
lack of efficacy in 2D in vitro testing, the limited scope, and the
extensive waste generated by this approach, the upcoming drug
screening methods must evolve in all these senses.

3D cell culture and organs-on-a-chip have begun to be
explored in the past decades. With the popularization of
extracellular matrix (ECM) gel for cell culture and the
exploration of the micromachining field for biomedical
applications, organ-on-a-chip technology became an important
field of study.'' The possibility of combining multiple types of
cells in the same device and creating an environment that more
closely resembles human tissues is desirable for studying new
drugs and pathologies. Although 3D cell modeling has been
used for this matter and has shown significant advances, this
technique presents drawbacks, such as low reproducibility,
sampling obstacles, and lack of comparative human func-
tions.' 4%

Organs-on-chips (OoCs) instead attempt to overcome
almost all the restrictions offered by the latter techniques.
Inspired by the semiconductor and micromachining industries,
OoCs are generally made of plastic polymers, such as
poly(dimethyl siloxane) (PDMS), polyester, or glass, using
microscale mold techniques for their fabrication.'' Due to their
architecture, OoCs allow for a more specific microenviron-
ment, being more comparable to the physiological state of a
human tissue. Characteristics such as flow rate, fluid exchange,
and mechanical and electrical stimuli make OoCs the most
acceptable option for substituting the former drug screening
approaches. In addition, it is possible to directly measure
analytical responses by coupling microsensors into those
devices.”*™*® 00Cs are recognized by their reduced size;
generally, channels are in the micro- to millimeter scale,
lowering the consumption of reagents and culture media to
nano- and picoliters. This characteristic is essential to reducing
costs and the waste generated by studies involving new drug
candidates. The use of culture media, expensive cell reagents,
and toxic solvents is considerably reduced with OoC since the
volumes in this approach are much lower.”” Additionally, OoC
technology is estimated to reduce 10—26% of R&D costs per
new drug, which is equivalent to US$169 to US$706 million.'*

On the other hand, OoCs have limitations like any other
technique, for example, because of the complexity of those
systems, the biological output, and compatibility with
analytical instruments. Furthermore, the materials widely
used in OoC manufacturing are still disposable plastic, and
this technology is still dependent on traditional 2D and 3D cell
culture for the generation and expansion of cells.'” Regarding
this dependency, a realistic scenario for generating less plastic
waste would be substituting disposable and long-lasting
materials, for recyclable and biodegradable ones instead.

https://doi.org/10.1021/acsbiomaterials.2c01454
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Also, it is expected that the use of OoC reduces the use of
traditional cell culture screening methods in the overall
scenario. Finally, as a new science with great perspectives for
replacing the current methods for drug screening, it would be
favorable to reconsider the material disposability of OoC and
traditional cell culture in the early stages and evaluate not only
the possibility but also the fostering of biodegradable
components in OoC and cell culture materials production.

B OoC FABRICATION AND ITS IMPACT

As discussed in previous sections, the mass manufacture and
use of disposable OoCs may result in future environmental
problems, with the primary causes being (1) the materials
utilized in their fabrication and (2) the fabrication techniques
used. Next, we will review each topic in detail, comparing the
potential environmental damage caused by mass-producing
O0Cs with the methods currently applied in cell culture.

B MATERIALS FOR OoC FABRICATION

The literature on OoCs reports a wide variety of organs or
structures, including, among others, lung—,‘go_32 gut—,33’34
liver-,>>2° brain-,>"°® heart-,">*" and kidney-on-a—chipf“’42
Each OoC presents key characteristics to achieve high fidelity
of in vivo biological behavior, which presents unique challenges
for its production. In such a scenario, one of the main points of
a good design for an OoC is the choice of the right materials.
Lung-on-a-chip devices, for example, may require mimicking
the expansion and contraction of the lungs, while a heart-on-a-
chip might require mimicking heartbeats. In such cases, robust,
flexible, and stretchable materials are ideally required, with
poly(dimethyl siloxane) (PDMS) being a frequent choice. In
its turn, the presence of an exchange barrier (i.e., the blood—
brain barrier, air/blood in the lungs, the blood—excretion route
in the kidneys, etc.) is commonly simulated by porous
membranes with different cell cultures on both sides of the
membrane. The membranes are usually composed of polymers
such as poly(ethylene terephthalate) (PET)," poly(carbonate)
(PC),** poly(ester),”*® or PDMS*>*’ and have pore sizes in
the micrometer range. When the design of the OoC does not
require moving structures, rigid chips are a great option, as
their manufacturing can be more straightforward. These are
based on glass and thermoplastics such as poly(methyl
methacrylate) (PMMA, acrylic). Lastly, synthetic or natural
hydrogels are an excellent choice when the OoCs involve the
interface between cells and the extracellular matrix. They
consist of a three-dimensional network of polymer chains that
can hold significant amounts of water.* As solutes can diffuse
across the aqueous solution within the fibers,*’ hydrogels are
highly suitable for reproducing the extracellular matrix while
maintaining the mechanical support required by cell cultures.

Following that, we will cover the main characteristics of the
three most applied materials in OoC manufacturing (PDMS,
glass, and thermoplastics) and their possible impact on the
environment when mass-producing microchips.

PDMS. PDMS presents a range of other desirable
characteristics for producing OoC devices in addition to
being flexible and stretchable, including being transparent,
being easily cast into different shapes, providing tight sealing to
glass or other PDMS pieces, being relatively low-cost ($0.30/
g),””"! being gas-permeable, and being biocompatible. It also
has some critical downsides, including its hydrophobicity,
absorbability, and fluorescence, which can hamper optical
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measurements.”” Currently, the recycling of silicon elastomers
is highly challenging, and researchers have been studying new
cross-linking strategies to allow this process to be performed.”
Furthermore, although there is evidence that liquid PDMS is
rapidly degraded (in a few months) in certain environmental
conditions, solid PDMS is known for its stability over a wide
range of temperatures and for resisting UV and O; exposure,
essential characteristics for efficient sterilization of OoC
devices.>*>> Solid PDMS is non-biodegradable, and data
shows that silicon-based pieces can take up to 500 years to
degrade,”® making them a potential environmental hazard.
Finally, PDMS-based OoCs can be autoclaved, increasing the
reusability potential of OoCs based on them. However,
because the polymer may absorb molecules into its structure,
the use of devices might be limited to specific applications.

Glass. Glass, in its turn, is hydrophilic, biocompatible,
transparent, low cost ($ 0.017/g),57 resistant to mechanical
stress and temperature fluctuations, and highly inert, making it
ideal for building OoCs for tests of absorption rates.”” The
material, however, is inflexible and requires more time-
consuming fabrication techniques compared to commonly
applied polymers. It is estimated that the production of glass-
based OoCs can be up to 10 times more expensive than
PDMS.*® Furthermore, it is gas impermeable, which can cause
problems with bubble trapping but can also be helpful for
studies under anaerobic conditions.”” Although glass is one of
the longest-lasting manufactured materials, taking up to 1
million years to degrade, it is easily recyclable.””®’
Furthermore, glass can be autoclaved and is highly inert,
increasing the potential to develop reusable OoC devices. It
should be noted that glass—glass bonding requires chemical
procedures to be performed at high temperatures, the use of
corrosive acids,’' or the use of adhesives, possibly hampering
recycling processes.

Thermoplastics. Thermoplastic-based chips can be easily
mass-produced, have low costs ($0.015/g for clear acrylic),”
and are biocompatible but also are inflexible, may present
autofluorescence, have poor gas permeability, and are not
always transparent, hampering the visibility of cells under
microscopes. Furthermore, these devices are inadequate for
performing studies at high temperatures, as these materials
present relatively low melting points (160 °C for acrylic, for
example).’” Regarding environmental aspects, thermoplastics
are commonly durable and non-biodegradable.”® Although this
material is known to be inert, reusing thermoplastic-based
OoCs must proceed with caution, as these are incompatible
with using many solvents or autoclaves for sterilization.

It is safe to say that the majority of OoCs currently produced
rely on the critical characteristics of PDMS or thermoplastics,
making the construction of devices with materials that are
biodegradable or easily recyclable an excellent challenge for
researchers. Using glass to fabricate microchips makes
recycling easier but hampers mass production. On the other
hand, OoCs partially composed of biodegradable materials
have been described in the literature,®* but to the best of our
knowledge, few fully biodegradable chips have been produced
to date.” Recently, poly(lactic acid) (PLA) has been suggested
as a sustainable material for the production of OoCs, as it is
derived from renewable organic sources (i.e., corn starch or
sugar cane) and is compatible with mass production
techniques such as injection molding.”” The polymer is
biodegradable, biocompatible, transparent, and inert and
presents low autofluorescence, making it a promising material
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for the production of O0Cs.®”°® When hydrolytically
degraded, PLA is converted back to its monomer (lactic
acid) or carbon dioxide and water, an ecofriendly material.*”®”
The typical half-life of the polymer is 30 weeks, which might be
adjusted as needed but can be a problem if extremely long
experiments are required.“

A different aspect directly involved in the environmental
impact is the reusability of devices. As discussed in previous
sections, the great majority of publications related to OoCs
rely on single use devices. Producing a reusable chip might be
challenging, as the device must be suitable for multiple
sterilization cycles, be highly inert, and allow extensive
cleaning. However, research on reusable chips has been
recently reported. Sakolish et al.”® have produced a reusable
microfluidic model of the human proximal tubule and
glomerulus, while Sun et al.% have developed a reusable,
standardized universal interface module for OoC applications.

The discussion of the environmental impact of mass-
producing OoCs for cell culture assays is not complete if we
do not consider the impact that current techniques possess in
this field. In traditional assays, cells are cultured in flasks, and
tests are carried out on well plates. OoC devices still require
cells to be cultured in flasks, mainly replacing well plates for
the tests. Microplates are commonly composed of poly-
(styrene), poly(propylene), poly(carbonate), or glass, and it is
estimated that ag)proximately 63 g of plastic is used to produce
a 96-well plate.”” As a means of comparison, a two-layer 3 X 4
cm® OoC produced with PMMA (3 mm thickness) uses
around 8.5 g of the polymer. If we consider that each
microchip will be used for a single test, about 815 g of PMMA
would be required to perform 96 tests, an increase of almost 13
times the amount of material compared to the traditional 96-
well plate. It is essential to note that, depending on the
protocols and the cell lines cultivated on the chip, multiple
tests can be performed in a single device, but these numbers
are commonly limited to low values. Therefore, significant
waste is expected if the same tests are performed using OoCs.
Last, typical 96-well culture plates cost approximately $4.88
per unit ($0.05 per test)."* Commercial OoC kits, in turn,
range from $75 to over $1300.**”° The price of lab-made
devices varies with the materials and techniques used but is
estimated to be around $5 for a typical PDMS-based chip.”" It
is important to note, however, that a reduction of 10—26% in
costs in research and development is expected with the use of
O0Cs due to their increased efficiency in predicting human
body behavior, as we mentioned above.””

B FABRICATION METHODS FOR OoCs

Similar to the materials used in the fabrication of OoCs, the
techniques chosen to build each chip depend on its required
features. The most common approach to fabricating PDMS-
based devices is to construct a mold using photolithography
and produce OoCs through soft lithography. Glass-based
O0Cs, in turn, are usually produced by wet etching, laser
scribing, or photolithography.”>”* Last, thermoplastic-based
devices can be quickly produced through photolithography
followed by hot embossing or injection molding.>” It is
interesting to notice that the production of OoCs using such
approaches usually generates chemical residues. Photolithog-
raphy, for example, uses solvents in many stages, including
development and lift-off. Solvents are usually produced by
distillation and are energy-demanding, with separations
accounting for 10—15% of worldwide energy use.”® Therefore,
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scaling up the use of solvents could bring direct environmental
harm not only due to their disposal but also due to their
production methods. In such a scenario, the recovery and reuse
of solvents in these production techniques are critical aspects
of the sustainability of the chemical industry.”" It is important
to note that traditional microplates are mass produced by
injection molding, allowing many plates to be produced in a
single metallic mold, not generating a significant amount of
chemical residues. However, the energy consumption for
processing the polymers is still a concern and is currently
estimated to be around 3 kWh/kg.”*

B MODIFICATION OF OoC PLATFORMS

OoC platforms can be modified with different surface
treatments or materials to provide additional features or
desired characteristics. For example, oxygen plasma has been
commonly used to temporarily provide hydrophilic properties
to PDMS due to the introduction of polar functional groups
(mainly SiOH) and for providing strong bonding.”* Polydop-
amine (PDA) coatings, on the other hand, are a simple and
versatile option for providing a biocompatible surface with
improved cell adhesion and proliferation properties. The
sterilization of devices using heating, UV, or chemicals might
influence the properties of the treated surfaces. For example, a
study by Davidsen and colleagues showed increased hydro-
phobicity of PDA coatings after thermal treatment (121 °C, 24
h), which was accompanied by increased cell proliferation. The
coating has shown a greater amount of superficial quinone
groups and a decrease in the number of primary amine
groups.”® Therefore, successive sterilization cycles might
influence the functioning of the device, with the adequate
strategy being defined by studying the device composition and
end use. The effect of these common surface modifications
should also be carefully studied in new and unconventional
materials, ensuring higher versatility and tunability in the
developed OoCs.

Structures can also be added to the chips to provide
additional features. For example, electrodes can be added to or
built into the OoC platforms to serve as the basis for sensors or
biosensors.”””* Commonly, electrodes are composed of Au, Pt,
Ag, or different forms of carbon and can be added to the
microfluidic platforms through photolithography, for exam-
ple.”” These electrodes might be modified with chemicals (i.e.,
polymers, nanomaterials) or biomolecules (i.e., antibodies,
aptamers, enzymes, etc.) in order to precisely and adequately
detect the desired targets.*”" Especially if biomolecules are
used, adequate sterilization of the OoCs becomes extremely
challenging. In this scenario, measurement systems that can be
decoupled for sterilization (for example, no-contact optical-
based measurements and capacitively coupled contactless
conductivity detection (C*D)) might be interesting options.
This increases the complexity of the process and, depending on
the technique and materials used, might make sterilization
unfeasible.

B OoC FOR PHARMACEUTICS

Implementing OoC in research and development of new
pharmaceutical drugs can increase efficacy, reduce costs, and
substitute for animal research.'* However, implementing new
technologies is challenging, burdened by regulatory concerns
and mismatches in priorities among developers in scientific
contexts. Furthermore, the demands of the industry for
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Figure 1. Main organs on chips, their application in the pharmaceutical industry, and their connection to creating a human-on-a-chip. (A) The
main organs applied to OoC implementation, in order: lung, heart, liver, intestine, kidney, blood vessel, and lymph node. (B) Most typical
applications of OoC for the pharmaceutical industry. (C) Multiple OoC designs representing different organs connected, leading to the
development of a Human-on-a-chip or a Body-on-a-chip. Made with Biorender.com.

manufacturability, compatibility, and robustness are other
factors to be considered.*”* Understanding the complexity
involved in this subject, funding agencies have made efforts to
facilitate the implementation of OoC. Some examples are the
Tissue Chip Program, launched in the US in 2012, and
ORCHID in Europe from 2017 to 2019. Such programs were
created to promote collaboration between OoC-developing
researchers and startups, the pharmaceutical industry, and
regulatory agencies to develop products to solve specific
market problems. Specific activities of the Tissue Chip
Program included investigating stem cells as potential sources
to populate OoCs and enabling the study of biological systems
in space.*¥®> ORCHID activities included investing in OoC
technology platforms (including high-throughput data anal-
ysis) and multiple organ models.”> These efforts have started
to yield results in government policies recently. In December
2022, the Food and Drug Administration (FDA) determined
that animal testing would no longer be required for the
approval of new drugs.*® This decision was taken after the
agency committed a S-million-dollar budget to explore
alternative testing methods earlier that year.®’

Although there are intense efforts to make OoC progress,
there are also limitations. Probst et al. identified three main
challenges for OoC technology to meet industry benchmarks
for high-throughput screening. Among them are material
limitations in fabrication and scale-up, which can only be
overcome through a significant increase in cost; the lack of
integration with online analytics and sensors, which are
currently limited to only a few parameters; and the low-
throughput of essential processes, such as perfusion, sampling,
and cell injection, since sterility and stress control are crucial
for cell culture.**
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However, since the mid-2000s, a few companies have
commercialized OoC platforms and managed to implement
OoC technology in the pharmaceutical industry.”> Their
primary applications are identifying and validating new targets,
drug discovery, pharmacokinetics and dynamics, preclinical
safety, and clinical development.*” Also, the most widely
investigated single organ models are the liver, heart, lung,
intestine/gut, kidney, and blood vessel.** Among the note-
worthy multicellular platforms are OrganoPlates from Mim-
etas, which present microfluidic tridimensional cell cultures in
a pump-free perfusion system; and HUMIMIC from TissUse, a
multiorgan platform with an on-chip micropump. Both allow
increased throughput and multiple applications, which are
currently implemented by companies such as Roche, Bayer,
and AstraZeneca, among others.*®

B MAIN ORGAN CHIPS AND THEIR
PHARMACEUTICAL RELEVANCE

Liver. The liver is the central organ for drug and toxin
metabolism. OoCs that reproduce the bile duct,” hepatic
lobules,”® and hepatic sinusoids’’ were developed for
metabolite formation,”” drug toxicity assessment, > virus
infection,”* and alcohol studies.”'®”> Recent advances include
using 3D cell culture for multiparameter and high-content
analysis in future works.”'®

Heart. Heart disease is the leading cause of human
mortality.'® It is recognized that the contractility of
cardiomyocytes is closely related to various factors, including
flow rate, calcium concentration, substrate, and electrical
stimulation,” all of which can be closely controlled using OoC.
Recent advances include improving substrates,” monitoring
important biomarkers,”” and studying cell contraction.””®
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Lung. The primary role of the lungs is to transfer oxygen to
the blood. Currently, most lung chips focus on the effects of
mechanical airway pressure, shear forces, and the blood—air
barrier'*® using a two-channel chip with mechanical
motion.”” Recent advances include improved gas exchange
for oxy$enators,99 simulation of the lung microenvironment for
cancer, 90 and assessment of asthma treatment assessments.'”’

Intestine. Essential for digestion and absorption of
nutrients, intestinal chips are built in a two-hollow micro-
channel, including a substrate for the intestine and blood cells
to interact with each other and an airstream for peristaltic-like
stimuli.'%*'%® Recent advances include the culture of biopsy-
derived cells closely resembling small intestine character-
istics'”> for drug development and studies featuring the
intestine microbiome'®” and its morphology.'**

Kidney. Important for toxicity studies, kidney chips are
composed of two layers: with a medium pool on the base and a
porous membrane with cell culture and continuous medium
perfusion on top.'®® The latest advances include simulation of
responses often observed in humans under viral infection and
prediction of host—parasite mechanisms.'*>'%® Several devices
have been developed to assess drug transport and nephrotox-
icity. 965107

Blood Vessel. Necessary for mass and nutrient transfer
among organs, vessel chips are challenging and diverse because
of their complexity. They are used mainly to evaluate vascular
diseases such as atherosclerosis, thrombosis, inflammations,
and tumor metastasis.'**~''" Recent advances include the use
of 3D cell culture to study angiogenesis, cell interactions,”"""
inflammatory responses,''” and tumor adhesion and migra-
tion."" """ Figure 1 shows the mentioned OoCs and their
main functionalities.

Lymph Node. Responsible for initiating the immune
response and key to determining the immunotoxicity of new
drugs,'"> lymph node OoCs are often multicompartmental to
mimic the complex, specialized architecture of this organ.''*'"”
They enable the investigation of tumor—immune interactions,
T cell-dendritic cell interactions, immunological quantifica-
tions, and real-time imaging of cell movement.' ¢! 1#7120

B PERSPECTIVES FOR INDUSTRY SCALE

A microdevice such as an OoC is likely to have a low
environmental impact compared to mass production. For this
reason, it is vital to predict the likelihood of OoC scaling up
and the substitution of the traditional methods currently used
for drug development. In this topic, we will discuss the
numbers of the current OoC market and predict the future
scaling up of this technology, considering environmental
aspects.

Invariably, new technologies and innovations follow new
business opportunities. OoC can decrease the productivity gap
in the entire pharmaceutical sector, saving time, effort, and
money for the research and development of new drug
candidates (R&D).'”" Therefore, the market for this
technology has significant business potential.'”” An initial
perspective of this potential is determined from the perspective
of R&D savings in pharmaceutical companies, which can reach
10 to 26% of the entire R&D costs within 5 years.'™'*’
Considering R&D spending ranging around 83 billion
dollars,"**'*> the saving potential of OoC is certainly
multimillion scale,'** with surveys estimating the market size
of US$350 million up to 2030."*°
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Regardless of the potential for OoC, the pharmaceutical
industry hesitates to adopt this technology as a standard. This
hesitation is most likely due to the need for an initial
investment in a standardized and highly reliable OoC
production system,'*'*” which is crucial to provide the
necessary reproducibility and accuracy for drug discovery and
development. As a nonstandardized new technology, OoC
platforms still need to accurately predict every new drug’s in
vivo behavior, yet recent research and OoC industry efforts are
in development to cross this barrier.'”® Ewart and Roth'*
stated that OoC developers and the end-users must cooperate
to achieve good acceptance in pharmaceutical companies. This
acceptance would allow for a faster proof of concept, adapting
and substituting the traditional tests. Therefore, new
companies and start-ups are rising to fill gaps in OoC
technology, mainly by standardizing several aspects of the
chips. This includes research involving substrates, cells, device
materials and protocols, interfaces with analytical instruments,
and assay protocols.lm’129

Currently, the leaders in the OoC market are still relatively
small companies, such as Emulate (USA), Mimetas (NL),
Hesperos (USA), Aim Biotech (SG), AxoSim (USA),
InSphero (CH), Nortis (USA), Micronit (NL), BEOnChip
(ES), Mesobiotech (FR), and TissUse GmbH (DE).'*%'287132
The fabricants compete for OoC implementation and the
development of high-throughput systems and work closely
with major pharmaceutical companies to develop targeted
solutions.'” Emulate, for example, has Roche, Takeda
Pharmaceuticals, Merck, and Janssen as partners,133’_135 while
TissUse develops OoC for AstraZeneca and Roche.'””"*%'¥

As the OoC business is still in the early stages of
development and does not present much data, we may look
at similar consolidated technology markets, such as those for
microfluidics, to get a broad idea. Although microfluidics
involves a larger market than OoC, both are considered similar
in the manufacturing methods and aggregated value of the
devices.'""**'* Except for companies operating in different
branches, such as Thermo Fischer Scientific, Danaher
Corporation, and Illumina, Fluidigm Corporation is the
foremost company in the microfluidics business, with a
revenue of US$130.8 million.'*® Emulate is the second,
currently presenting a revenue of US$1.92 million revenue,'*!
only a tiny fraction, although the investments in this company
are among the highest in the field."**'*" On the other hand,
the OoC business is still expanding, with total venture funding
of US$224.3 million, according to CrunchBase."*® Extrapolat-
ing the potential profit for this business (US$350 million in
2030),"*° it is possible to assume that the market for OoC is in
its embryonic stage, with its current production representing a
small portion of its future scale.

It is only a matter of time before OoC devices become
massive, which leads us to think about the environmental
impact they may cause. There are several OoC producers;
however, the materials and techniques employed for
fabrication are mostly the same for all, mainly due to the
cost-effectiveness of those protocols.'*® Considering that
858,000 OoC units are expected to be produced in 2022,'*
and an estimate of 8.5 g of PMMA used per device, it is
expected that approximately 7.3 tons of waste will be generated
by the OoC industry in 2022. However, as the market for OoC
grows, the number of devices produced will also increase,
intensifying waste production. To account for this waste
generation caused by the OoC market, the market size can be
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correlated with the number of OoC manufactured, which is
used to calculate the total plastic waste. Considerin% the
market size projections for 2022 and 2030 of US$117"*” and
U$$350.8 million,"*® respectively, we can project the number
of OoC to be produced in 2030 at about 2.575 million devices,
equivalent to approximately 21.9 tons of PMMA waste,
roughly three times the amount projected for 2022. For
comparison purposes, in 2017, it was estimated that 348
million tons of plastic had been produced,'*” of which 6
million tons were generated by research laboratories world-
wide.*”* From these 6 million tons, we can estimate 1.3
million tons of plastic waste being generated specifically from
biochemistry, genetics, and molecular biology laboratories
worldwide, according to the number of programs and institutes
in those fields around the world.*"**"* It is important to point
out that the specific amount of plastic waste generated by cell
culture laboratories is not explored by the literature, indicating
a lack of interest in the impact that this could cause.

Finally, by the previous projections, OoC plastic waste
currently represents a small portion of total laboratory waste,
even when considering the waste generated specifically from
biotech laboratories. Considering the high potential of OoC to
substitute several experiments of the currently used method-
ologies and the ability to reduce costs, energy, time, and
resources in drug development, we estimate a lower environ-
mental impact than the in-use techniques. For example, we
anticipate the use of fewer well plates, cell culture flasks, and
Petri dishes for specific experiments once OoC devices can
sometimes substitute for an entire well plate. This, of course,
requires more in deep analysis since OoC is still being
improved to provide efficient and reliable results. Moreover,
the predictions for waste generation from OoC devices in the
future are still lower than those for plastic residue produced
today by biotech research laboratories. However, maintaining
the current numbers of plastic waste production should not be
the ultimate goal, but rather the mass reduction of waste and
the replacement of primitive habits. For such purposes, we
envision the use of biodegradable and/or reusable materials for
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the development of O0Cs, in parallel with the implementation
of a circular economy model for OoCs and cell culture
materials. Noteworthy, the proper savings from the OoC
impact on drug discovery could be used to research greener
materials and protocols for OoC devices, cell culture flasks, and
reagents.

B IS OoC A SUSTAINABLE OPTION?

The OoC is already a reality in scientific laboratories, and
scaling it for industrial purposes is becoming tangible. Cost-
effectiveness research had already proven a 25% improvement
in effectiveness and a US$700 million reduction in costs."*
Also, OoC systems drastically reduce reagent consumption,
which is significantly better for the environment and reduces
costs.

The fabrication of OoCs is inspired by concepts of the
micromachining industry, which is based on plastic and non-
biodegradable materials.”” Current efforts in OoC research are
focused on enhancing reproducibility and human similarity and
expanding the use of OoCs for a whole range of possibilities in
the medical, pharmaceutical, and chemical industries.>” It is
poorly reported in the literature, though, on efforts to
substitute plastic materials in the OoC fabrication process
and in traditional cell culture. In addition, research on reusable,
sterilizable materials for cell culture and microchips is scarce.

To elucidate this scenario, we have collected data from two
search databases, Google Scholar and Web of Science. The
research was based on two factors: reusable/disposable OoC
and the use of biodegradable/sustainable materials in OoC
fabrication. Data from 10 years (2012—2022) was collected
and compared in the graphs shown in Figure 2A. For the
evaluation, the terms used for the search were “organ on chip”,
“organ on chip + reusable OR recyclable,” “organ on chip +
disposable OR plastic”, and “organ on chip + biodegradable
OR sustainable.” The results were organized and compared in
two bar charts, one for each database platform. In addition, we
have made a search on the trending publications based on the
plastic waste generated by traditional cell culture, finding an
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increasing concern on the topic over the years. For the search,
we have used “Cell culture + plastic waste” as the input, and
the bar chart with the number of publications over the years
for the two databases is displayed in Figure 2B.

The search results showed an increasing tendency in OoC
research over the years for both platforms until 2022, and even
though the amount of reusable and biodegradable OoC
research is low compared to the overall number, they are all
increasing over time. For Google Scholar, it is possible to
notice a higher accumulated number of publications with
disposable OoC (3796) compared to reusable OoC (581) and
biodegradable OoC (3089) over ten years. For Web of
Science, instead, the accumulated number of publications with
biodegradable OOC (63) is greater than that with disposable
00C (55) and reusable OoC (11). It is worth mentioning that
not all disposable OoCs are referenced as such in publications
because of the adverse claims anchored to them. However,
nearly all publications involving reusable and biodegradable
OoC use these terms as a substantial appeal. Publications
involving reusable OoC are remarkably low compared to the
other searches, indicating that this approach might include
implementation obstacles and may even generate a lack of
interest. The implementation of reusable OoCs can be
challenging because of the whole process of fabrication and
sterilization. As mentioned in this review, developing an OoC
involves a diligent procedure, including stages that require
glues and tapes, making a second use very problematic and
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sometimes impracticable. In addition, the sterility of the OoC
is a crucial factor; eventually, this can be an obstacle to reusing
the chip, which is later discussed in more depth in this review.
Evaluating the number of publications involving the term
“Biodegradable OoC”, we see a considerably higher number
compared to reusable chips over the years. This trend is
probably due to the increasing interest in working with
biodegradable materials such as PLA and the consequent
financial impact caused by the use of such materials, as
mentioned above. Finally, it is also possible to observe in both
database searches an increasing number of papers involving cell
culture and plastic waste, showing the growing concern for this
topic. Despite the rise and scale of OoCs, their reliance on
traditional cell culture for cell generation and expansion is
unavoidable. Thus, it is important to highlight the role of
plastic in traditional cell culture and the possibilities to
overcome the continuous generation of plastic waste with
effective solutions.

Considering the evaluated number of publications and what
this review covers, it is possible to infer that OoC is undeniably
becoming a recognized technology and soon will be scaled to
large productions. However, new technologies must take into
account their environmental impact to be successfully
established. Financially, OoC has proven beneficial,'* and
considering reagent consumption and the waste generated by
such, OoC is considered an enormous advance.'* However,
the materials broadly used in its fabrication are the same old-
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fashioned, poorly recyclable plastic from the biochemistry
industry. We can observe from the graphs in Figure 2 that
there is interest in exploring biodegradable materials for the
fabrication of OoC, although this subject needs more attention
in order to prosper. Upon evaluating the graphs, we can see
that biodegradable materials are the best option for more
sustainable OoC production. Therefore, if those materials are
not neglected, it is possible to build innovative and green
technology to replace and enhance in-use methods. Moreover,
those solutions must include traditional cell culture, given that
OoC is remarkably dependent on it.

Finally, according to our research, not much is explored
about reusable OoC, and considering all the fabrication
processes, this is a much more complex system. However,
reusable and recyclable prototypes are the most desirable when
implementing ecofriendly technologies. Therefore, considering
the principles of a circular economy,'** we propose a greener
point of view for the fabrication and scaling up of OoC, also
considering possibilities for a more ecofriendly cell culture
course of action.

B CIRCULAR ECONOMY APPLIED TO OoC AND CELL
CULTURE

Currently, most industrial and economic processes are based
on a linear model, which takes finite resources from natural
sources, transforms them into products, and eventually returns
them to nature as a pollutant, considerably harming the
environment (Figure 3A)."*> The economy is also not
benefitted by the linear model because most finite extracted
resources do not reach their maximum use.'*>'*® Cell culture
laboratories apply this linear model to perform biological
assays using sterile plastic materials. These are not sterilizable
under safe conditions, so they are discarded after a single use.
In addition, the research prospect presented earlier in this work
also demonstrates that most OoC devices reported in the
literature are disposable, a few works have introduced the use
of biodegradable materials, and only a tiny portion includes
reusable devices.

Furthermore, to discuss human activities that impact the
environment, it is imperative to mention the United Nations
Conference on the Environment (Stockholm), in which the
term sustainable development was first coined.'”’™'*’ The
term refers to a change in lifestyle carried out in a way that
conserves the resources of the terrestrial ecosystem by applying
the 3R (Recycle, Reuse and Reduce) premise.'*” Sustainability
has broad and flexible objectives related to using resources to
benefit the economic, social, and environmental sectors in a
balanced way."”'

The circular economy, instead, has a different environmental
model and a new perspective on resource use and is becoming
an attractive business model, since it mainly aims to benefit
companies and/or economic government systems while
reducing its environmental impact.">”">" The most accepted
concept of a circular economy was formulated by the Ellen
MacArthur Foundation: “a circular economy is an industrial
system that is restorative or regenerative by intention and
design”."”” The circular economy suggests that, within a
business model, energy and materials must be reused
efficiently, achieving a green chain. It is possible to implement
this idea by idealizing a durable and reusable project that
minimizes the input and waste of resources/energy by slowing
production, diminishin¥ steps within production, and designat-
ing the final waste.">°" 15 In this system, resource use must be
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optimized in a closed cycle, in which the waste must be
destined for reuse or at least for reuse steps such as
disassembly and recycling processes (Figure 3B).""

Therefore, applying the sustainability model and the circular
economy not only to OoC production but also to traditional
cell culture models may be a viable solution to minimize the
environmental impact that this new technology might cause in
the future of drug develogment. The number of technology
companies and start-ups' > in the world has been substantially
growing, and the need for innovative solutions in the
pharmaceutical field is proving to be a driving factor for the
appearance of new companies in the field." As explored before
in this review, today we have 58 OoC-based companies
worldwide, which primarily display OoC as disposable
products.””* In this context, using disposable plastic for
preclinical analysis could be minimized by establishing a
circular economy model from the beginning. In this model,
conventional 2D cell culture screening models, such as well
plates and transwells, could be replaced by nondisposable or
more ecofriendly OoC devices. In this critical review, we
envision prospective ideas for the use of the circular economy
applied to this innovative concept of OoC, including its
application for reusable and recyclable OoC. Moreover, we
address the challenges faced in the implementation of each
sustainable model, recognizing the role of traditional cell
culture as the most important plastic waste generator.

Reusable Options. As mentioned above, a second use of
an OoC or even cell culture materials is not as appealing as the
use of biodegradable materials by researchers. Reusing
materials involves high precision steps of sterilization, which
might concern the user as to whether the sterilization process
is effective or not and how much this could cost. However, the
research on the robustness of biodegradable materials for
bioengineering is also expensive, leading to a debate on what is
the best option from a green perspective. A combination of the
use of biodegradable materials and the reuse of the supplies for
cell culture and OoC could be a wise choice. That could be
possible by using sterilizable materials that resist high
temperatures, UV irradiation, decontamination solutions, and
a high sterilization cycle. Materials such as PDMS, elastomers,
glass, and thermoplastics already show these characteristics,
although a perfect solution would be introducing ecofriendly
materials such as PLA for this purpose.””®” The reuse should
involve the exclusive development of open-top devices and a
sterilization process performed by the user by disassembling,
cleaning, and disinfecting the chip using the traditional
methods of decontamination. This concept must be evaluated
and deeply studied to be implemented, but investments and
efforts are required for it to become real. The simple reuse of a
device would certainly reduce costs and, more importantly,
waste, but the combination of reuse and recyclable or
biodegradable materials would create a new environmental
cycle for this business.

Biodegradable/Recyclable Options. Using recyclable
materials for OoC production and for cell culture could
introduce a circular economy model in which the producer,
recycler, and end-user would work collectively more efficiently
in a business model. In this scenario, materials such as PDMS
could be subjected to disruption, exposed to high temper-
atures, filtered, and polymerized to form silicone oil.">> This oil
could be applied as an additive in the cosmetic, automotive,
and surface treatment industries.”> Furthermore, the use of
biodegradable materials for the production of OoC and cell
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Figure 4. Diagram of advantages and disadvantages of different sterilization methods and their susceptibility to the different materials.

culture consumables is increasing, as evaluated by this review,
showing a compelling interest among researchers in the field.
The use of these materials is desirable and nonaggressive and
could also be part of environmental cycles. Food industry
waste could also be used to produce such polymers for OoC
and cell culture flasks fabrication, improving two processes at
once.'**”"*® Finally, an ideal solution would be to optimize all
these suggestions to find a sustainable and financially balanced
way to use plastic materials for pharmaceutical research.

B STERILIZATION PROCESSES

Sterilization is a process that removes or kills undesirable
microorganisms from materials so that cells can be safely
cultured."*” O0C and cell culture flasks, sterilization processes
include chemical and physical techniques, and the best
methods are chosen according to the material usage (see
Figure 4).

Physical methods include autoclaving and dry heat for
temperature-resistant materials such as PDMS and glass, which
achieve temperatures up to 180 °C and are ecofriendly and
effective.’ y Radiation is another example, ideal for
thermoplastics such as PMMA, PET, and poly(ethylene),
although it is a high-cost, toxic, and unfavorable option for low-
scale production.'® Finally, UV sterilization is another
validated technique for surface disinfection by applying UV
light radiation in the germicide range (200—280 nm).'®" This
technique affects nucleic acids by causing adenine—thymine
collapse followed by thymine dimerization'®" and has no
thermal restrictions. Both gamma and UV radiation are
incompatible with a few plastic materials due to the constant
material degradation over a few cycles of sterilization.

Chemical methods include disinfection, sterilization, and gas
sterilization. Several chemicals (alcohols, aldehydes, halogens,
phenols, surfactants, and heavy metals) are sterile under
surface contact for up to 12 h.'% However, they are not as
efficient as thermal treatment due to their limited penetration
capacity, which is limited for microchannels such as OoC.'*’
Ethylene oxide (45—63 °C) and formaldehyde (70—75 °C)
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streams are used as sterilizing gases.'®” They are broadly used
to sterilize heat-sensitive medical equipment and allow
sterilization of many materials,'*”'®* including thermally
unstable polymers. However, these gases are considered
mutagenic and carcinogenic.160

The experimental performance of the cells depends on the
efficiency of the sterilization process for either the microfluidic
components in OoC systems or plastic components in
traditional cell culture. Considering that, inefficient steriliza-
tion, mainly in the tiny microfluidic channels, might add risks
and disadvantages to the analysis routine of a cell culture
laboratory. Moreover, this could raise concerns about cross-
contamination, delays in the delivery of results, time-wasting,
and an increasing risk of accidents involving the autoclave,
gases, and radiation.

From all the methodologies mentioned above and
considering what was covered in this article, ethylene oxide
and y radiation are considered the best methods for large-scale
sterilization.'®® This includes the production of OoCs on
industrial scale and their reuse for clinical studies, as well as the
sterilization of plastic materials for cell culture. These
techniques are considered efficient for disinfection due to
their susceptibility to most materials used for OoC and cell
culture, such as PMMA, glass, PDMS, and PC. Finally,
ethylene oxide and y radiation can be reliably used for
sterilization of microfluidic channels and irregular surfaces due
to their high penetration capacity.'®®

B CONCLUSION

The necessity for new and more reliable methods for drug
screening has led us to the most recent advance in the area,
O0Cs, which are still in development. OoC is becoming an
essential possibility to replace old standard methods for the
pharmaceutical industry, showing cost reduction estimates of
10—26%"* and a roughly estimated waste reduction of over 3
million tons of plastic compared to the waste generated by
research laboratories. Moreover, OoC displays a fair decline in
reagent and supply consumption.”” However, there are
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concerns about the materials and methods used for OoC
fabrication since they still represent non-recyclable and
unsustainable ideas inherited from the micromachining
industry. In addition, OoC still relies on traditional 2D and
3D cell culture for cell growth and expansion, evidencing the
need for better and more sustainable approaches to cell
culture. Although there have been efforts to change this
scenario, only a tiny fraction (29.5% for Google Scholar and
1.9% for Web of Science over the past ten years) of
publications in the area are eager to discuss the environmental
impact this technology might cause and suggest greener
solutions. However, it is possible to observe a rising concern in
publications relating to cell culture and plastic waste over the
years, which greatly affects the waste generated for OoC
research. As a perspective for this new science, we can envision
OoC substituting old methodologies as it develops because of
its advantages. However, unlike the former approaches for drug
screening, as 21st-century researchers, we must reflect on the
environmental impact of OoC technology and invest in
cleaner, cleverer, and more complete solutions.

This work discussed estimates for OoC to become a
standard test for drug screening and its implications. We have
concluded that the environmental impact would be lower if
compared to in-place methodologies, but OoC is still attached
to the use of traditional plasticware. We have suggested a few
possibilities for a greener introduction of OoC to the industry
based on concepts of a circular economy and ecofriendly
possibilities for the continuous use of traditional cell culture for
OoC. The data survey we collected showed a greater interest in
using biodegradable materials for OoC production than reuse
or recycling. However, combining recycling, reuse, and using
biodegradable materials would create a new concept of the use
of technology in the pharmaceutical industry. Finally,
considering the complexity involved in implementing such
ideas, investments and interests must be put into this field to
succeed.
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